Классификация аддитивных технологий. Аддитивная технология - будущее, которое наступает

Технологический процесс не стоит на месте, с каждым днем происходит усовершенствование цифровых технологий, что позволяет использовать новшества в различных сферах жизни человека. Аддитивные технологии - одни из самых передовых и востребованных во всем мире.

Аддитивные технологии – что это такое?

Аддитивные технологии (Additive Manufacturing – от слова аддитивность – прибавляемый) – это послойное наращивание и синтез объекта с помощью компьютерных 3d технологий. Изобретение принадлежит Чарльзу Халлу, в 1986 г. сконструировавшему первый стереолитографический трехмерный принтер. Что значит аддитивный процесс послойного создания модели и как он происходит? В современной промышленности это несколько разных процессов, в результате которых моделируется 3d объект:

  • UV-облучение;
  • экструзия;
  • струйное напыление;
  • сплавление;
  • ламинирование.

Материалы, используемые в аддитивных технологиях:

  • воск;
  • гипсовый порошок;
  • жидкие фотополимеры;
  • металлические порошки;
  • разного рода полиамиды;
  • полистирол.

Применение аддитивных технологий

Технологический прогресс способствует производству множества полезных вещей для быта, здоровья и безопасности человека, например аддитивные технологии в авиастроении помогают создавать более высокоэкономичный и легкий по весу авиатранспорт, при этом его аэродинамические свойства сохраняются в полном объеме. Это стало возможным в результате применения принципов строения костей птичьего крыла в проектировании крыльев самолета. Другие сферы применения аддитивных технологий:

  • строительство;
  • сельскохозяйственная промышленность;
  • машиностроение;
  • судостроение;
  • космонавтика;
  • медицина и фармакология.

Аддитивные 3d технологии

Динамически развивающиеся быстрыми темпами аддитивные технологии 3d печати используются в прогрессивных производствах. Существует несколько инновационных видов аддитивных технологий:

  1. FDM (Fused deposition modeling) – изделие формируется послойно из расплавленной пластиковой нити.
  2. CJP (ColorJet printing) – единственная в мире 3d полноцветная печать с принципом склеивания порошка, состоящего из гипса.
  3. SLS (Selective Laser Sintering) – технология лазерного запекания, при которой образуются особо прочные объекты любых размеров.
  4. MJM (MultiJet Modeling) многоструйное 3d моделирование с использованием фотополимеров и воска.
  5. SLA (Laser Stereolithography) – с помощью лазера происходит послойное отвердевание жидкого полимера.

Аддитивные технологии в машиностроении

Джим Корр, американский инженер использует аддитивное производство в машиностроении уже в течении 15 лет. Проект Urbee, компании Kor Ecologic – это создание первого прототипа 3d автомобиля со скоростью 112 км/ч, его кузов и некоторые детали напечатаны на 3d принтере. Другая компания Local Motors в ноябре 2015 г. представила «умный и безопасный» автомобиль LMSD Swim – 75% деталей которого, выполнены с помощью трехмерной печати используя АБС-пластик и углеволокно.

Аддитивные технологии в строительстве

Аддитивное производство зданий и различных сооружений существенно сокращает время застройки. Строительная 3D печать в тренде по всему миру. Эксперименты, производимые на лазерных 3d-принтерах для обывателей выглядят на грани фантастичных. Аддитивные 3D технологии – положительные аспекты в строительстве:

  • экономия времени и финансовых затрат (скорость возведения в считанные дни снижение затрат на логистику, расходные материалы, наем большого количества персонала);
  • воплощение в жизнь любых дизайнерских решений и сложных геометрических форм (средневековые замки, дома в форме астероидов и галактик);
  • возможность строить дома с учетом сейсмоустойчивости в зонах, склонным к землетрясениям и ураганам.

Самые известные 3d строения:


Аддитивные технологии в медицине

В 2016 г. для медицины стал прорывом благодаря аддитивным 3d технологиям. Качество медицинских услуг возросло в разы. Аддитивный процесс затронул несколько сфер здравоохранения и это снизило смертность среди пациентов, нуждающихся в качественных и срочных медицинских услугах. Преимущества использования аддитивной 3d печати в медицине:

  1. С помощью томографических снимков стала возможной в высокой точностью печать органа с патологией для изучения тонкостей и нюансов предстоящей операции.
  2. Трансплантология шагнула далеко вперед. Аддитивные технологии здесь решают сразу несколько задач – морально-этическую и сокращение времени ожидания, известный факт, что люди по нескольку лет ждут донорские органы, но иногда счет идет не на года, а на дни и даже часы. В скором времени пересадка искусственно выращенных человеческих органов станет реальностью.
  3. Печать стерильного инструментария. В эпоху тяжелых и неизлечимых вирусных инфекций, одноразовые стерильные инструменты сводят на нет заражение во время медицинских манипуляций.

На сегодняшний день, в медицине успешно применяются следующие продукты аддитивных технологий:

  • искусственно выращенная человеческая кожа (актуальна для пересадки людям с высокой площадью ожогов);
  • биосовместимая костная и хрящевая ткань;
  • печать органов с онкологическим процессом и изучения влияния лекарств на опухоли;
  • стоматологические импланты, протезы, коронки;
  • индивидуальные слуховые аппараты;
  • ортопедические протезы.

Аддитивные технологии в фармакологии

При обилии современных медикаментов, для врача важно знать, что такое аддитивный эффект в лекарствах, от этого зависит успех лечения. Совокупное действие принятых препаратов во время лечения должно быть синергичным (взаимодополняющим и усиливающим), но не всегда это так. Все зависит от индивидуальной непереносимости, состояния организма. Аддитивные технологии приходят на помощь и здесь. Уже тестируются напечатанные 3d таблетки Spritam от эпилепсии, в которых заложена информация о пациенте: пол, вес, возраст, состояние печени, индивидуальная дозировка.


Аддитивные технологии в образовании

Аддитивные технологии в школе уже активно внедряются, если еще недавно школьники изучали 3d моделирование в специализированных компьютерных программах, то сейчас уже стала возможной печать смоделированного изображения в объеме. Учащиеся наглядно видят свои изобретения, допущенные ошибки и как механизм работает. К 2018 году Министерство образования планирует обучить аддитивным технологиям в учебных заведениях 3000 педагогов.


Аддитивные технологии с полным основанием относят к технологиям XXI века. Они имеют огромный потенциал в деле снижения энергетических затрат на создание самых разнообразных видов продукции. Степень их использования в промышленном производстве является верным индикатором индустриальной мощи государства и его инновационного развития. На данный момент российские предприятия используют импортные металлические порошки. Серийного производства порошковых материалов для аддитивных технологий в России нет.

Исследовательская группа «Инфомайн»
Основана в 1993 году. Специализируется на изучении рынков промышленной продукции в России и странах СНГ. Основными направлениями исследований являются: минеральное сырье, металлы и химические продукты. За прошедшие годы специалистами компании подготовлено свыше 1000 обзоров. Клиентами «Инфомайн» являются более 500 производственных, торговых, консалтинговых компаний, банков и научных организаций из 37 стран мира. Среди них: «Газпром», «Лукойл», ТНК-ВР, АФК «Система», ГМК «Норильский никель», «Евраз Груп С. А.», Объединенная компания «Русал» и др. Профессионализм компании подтверждается многочисленными публикациями в научных и научно-популярных журналах, а также выступлениями на конференциях различного уровня.

Металлические порошки обладают уникальными химико-металлургическими свойствами, что позволяет использовать их в различных областях. С появлением аддитивных технологий порошковая металлургия получила новые перспективы развития. Порошковая металлургия является наиболее экономичным методом изготовления изделий, она характеризуется низким уровнем отходов по сравнению с традиционными технологиями (литьем, механической обработкой, холодной и горячей обработкой давлением) и минимальным количеством операций для получения изделий с размерами, близкими к окончательным. Другая особенность порошковой металлургии - возможность производства материалов и изделий, которые невозможно получить традиционными металлургическими методами. С помощью аддитивных технологий упрощаются производственные процессы в авиационной промышленности, энергомашиностроении, приборостроении - везде, где есть потребность в изделиях сложной геометрии и «выращивании» металлических деталей. В настоящее время с точки зрения внедрения аддитивных технологий Россия отстает от ведущих стран мира. По-прежнему российские потребители зависят как от поставок импортных высококачественных металлических порошков, так и от импорта самих 3D-принтеров.

Состояние аддитивных технологий в мире
Технология трехмерной печати (3D) начала развиваться в конце 80-х годов прошлого века. Пионером в этой области является компания 3D Systems, которая в 1986 году разработала первый стереолитографический аппарат. Первые лазерные машины - стереолитографические (SLA) и затем порошковые (SLS-машины) - отличались очень высокой стоимостью, выбор материалов был достаточно узкий, и до середины 1990-х годов они использовались главным образом в научно-исследовательской и опытно-конструкторской деятельности, связанной с оборонной промышленностью. В дальнейшем, после широкого распространения цифровых технологий в области проектирования, моделирования и механообработки, 3D-технологии начали бурно развиваться. Для 3D-технологий в настоящее время рекомендован термин Additive Manufacturing (AM). По данным Wohlers Associates, мировой рынок АМ-технологий в 2014 году составил около 3 млрд долларов при средних темпах роста на уровне 20–30%. Прогнозируется, что к 2020 году объем рынка может достичь 16 млрд долларов. Рынок аддитивных технологий стремительно меняется, происходит слияние и поглощение компаний-производителей машин, возникают новые центры оказания услуг в области AM-технологий, эти центры объединяются в европейскую, а теперь уже и в глобальную сеть. 63% всех аддитивных машин в мире производится в США. Наиболее заметно внедрение АМ-технологий в таких отраслях, как авиационная промышленность, судостроение, энергетическое машиностроение, а также стоматология и восстановительная хирургия. Главными заказчиками и потребителями AM-продукции являются авиационная и автомобильная отрасли США и Европы. Эти технологии привлекают крупные промышленные компании: Boeing, Mersedes, General Electric, Lockheed Martin, Mitsubishi, General Motors. Например, компания Boeing в последние годы значительно увеличила номенклатуру деталей, изготавливаемых по AM-технологиям. Сейчас таким образом изготавливается более 22 тысяч деталей 300 наименований для 10 типов военных и коммерческих самолетов, включая Dreamliner. Отказ от производства цельнометаллического листа в пользу спекания порошков при формировании каркасов ряда моделей Boeing позволил компании перейти на принципиально новый уровень производства. По мнению специалистов General Electric, через 10 лет примерно половина деталей энергетических турбин и авиационных двигателей будет изготавливаться с помощью AM-технологий. Активно применяются аддитивные технологии в бытовой электронике и медицине, в том числе в стоматологии. По словам представителей компании Arcam, произведенные ими устройства были использованы для создания более 30 000 титановых имплантатов для реконструкции тазобедренных суставов. Основным отличием АМ-технологий является то, что они применяются для формирования детали при помощи наращивания материала, в отличие от удаления в случае механической обработки. Использование аддитивных технологий позволяет изготавливать детали с характеристиками, недоступными для других методов обработки (например, с криволинейными отверстиями или внутренними пустотами). Послойный метод построения детали дает абсолютно новые возможности, например изготовление «деталь в детали», деталей с переменными по толщине свойствами материала (так называемые градиентные материалы), выпуск сетчатых конструкций, которые невозможно получить ни литьем, ни механообработкой. Значительные перспективы для 3D-технологий открываются в аэрокосмической отрасли. Это связано с тем, что с их помощью стало возможным кардинально уменьшить отношение массы материала, необходимого для выпуска детали, к массе конечной детали. Для большинства деталей, изготавливаемых традиционным способом, это соотношение может достигать 20:1, при использовании аддитивных технологий этот показатель составляет в худшем случае 2:1.


Рис. 1. Аппарат селективного лазерного сплавления SLM 280 компании SLM Solutions (Германия)

Почти все компании, использующие лазер, по-разному называют свои технологии. Это сделано для того, чтобы отличить себя от конкурентов, но по технической сути все они являются технологиями селективного лазерного сплавления - SLM-технологиями. Однако это название негласно закреплено за компанией SLM Solutions. Компания SLM Solutions (Германия) является одним из мировых лидеров в области технологий лазерного синтеза. SLM Solutions активно сотрудничает с компанией FILT. В результате этого сотрудничества появилась наиболее «продвинутая» на сегодняшний день машина SLM 280 (рис. 1). Этот аппарат отличается наличием двух лазеров: внешний контур детали и тонкие стенки обрабатывает первый лазер мощностью 400 Вт, основное тело детали - второй, более мощный лазер (1000 Вт). Сочетание двух лазеров разной мощности позволяет выпускать детали с толщиной отдельных фрагментов до 0,3 мм. Это также придает аппарату существенные преимущества: увеличивается скорость построения детали (до 5 раз), улучшается внутренняя структура материала и чистота внешней поверхности.

Виды аддитивных технологий
По методам формирования слоя принципиально отличаются два вида аддитивных технологий. Технология Bed Deposition предполагает на первом этапе формирование слоя порошка с последующей выборочной (селективной) обработкой сформированного слоя лазером или иным способом. Этой технологии достаточно точно соответствует термин «селективный синтез» или «селективное лазерное спекание» (SLS - Selective Laser Sintering), если «отверждающим» инструментом является лазер, который в данном случае, в отличие от лазерной стереолитографии (SLA-технологии), является источником тепла, а не ультрафиолетового излучения. Второй вид Direct Deposition - прямое, или непосредственное, осаждение материала, т. е. непосредственно в точку, куда подводится энергия и где в данный момент происходит построение фрагмента детали. Наиболее широко на рынке представлены модели группы Bed Deposition. Большая часть компаний - производителей таких аппаратов использует в своих машинах лазер в качестве источника энергии для соединения частиц металлопорошковых композиций. К ним относятся: Arcam (Швеция), Concept Laser (Германия), EOS (Германия), Phenix Systems (Франция), Realizes (Германия), Renishaw (Великобритания), SLM Solutions (Германия), Systems (США). В 2012 году в эту группу вошли китайские компании Beijing Long Yuan Automated Fabrication Systems и Trump Precision Machinery. Ко второй группе машин (Direct Deposition) относятся аппараты компаний POM Group, Optomec, Sciaky (США), Irepa Laser (Франция), InssTek (Ю. Корея). В России отсутствует серийное производство АМ-машин, которые используют в качестве материала металлические порошки. Вместе с тем целый ряд организаций занимается разработкой и созданием опытных образцов подобного типа аппаратов. Например, ОАО «Электромеханика» (Тверская область) в рамках совместной работы с ФГБОУ ВПО «МГТУ «СТАНКИН» изготовило автоматизированную 3D-установку для выращивания в вакууме точных титановых заготовок сложных деталей методом послойного синтеза электронным лучом из металлического мелкодисперсного порошка. ОАО «ТВЭЛ» совместно с научными организациями Уральского отделения РАН ведет разработку и организацию производства установок УрАМ-550 для селективного лазерного сплавления металлических порошков с размером рабочей камеры 500×500×500 мм. «Росатом» в кооперации с Минобрнауки планирует создать опытный образец 3D-принтера для изготовления металлических изделий на базе НПО «ЦНИИТМАШ». Специалистами ОАО «Национальный институт авиационных технологий» разработаны несколько типов экспериментальных лазерных установок послойного синтеза. Разработки аппаратов для лазерного послойного синтеза ведутся также Институтом проблем лазерных и информационных технологий (ИПЛИТ).



Рис. 2. АM-машина X line 1000R компании Concept Laser

До недавнего времени самой большой AM-машиной компании считалась X line 1000R (рис. 2) с размерами зоны построения 630×400×500 мм. Она была разработана совместно с Фраунхоферским институтом лазерных технологий (FILT) при участии Daimler AG и вышла на рынок в 2013 году. Первая такая машина установлена на Daimler AG для выращивания автомобильных компонентов из алюминия. К этой модели недавно была добавлена модификация X line 2000R, оснащенная двумя лазерами мощностью по 1000 Вт. Область построения увеличена до 800×400×500 мм. Компания пошла навстречу требованиям клиентов из аэрокосмической и автомобильной отраслей, повысив скорость построения изделий.



Рис. 3. Аппарат DMD IC106 компании POM

Компания POM (Precision Optical Manufacturing) является разработчиком DMD-технологии и держателем патентов на оригинальные технические решения по лазерным системам и системам управления с обратной связью с одновременным регулированием в режиме реального времени основных параметров построения детали: объема подачи материала, скорости перемещения головки и мощности лазера, которые обеспечивают стабильность и качество рабочего процесса (рис. 3). Эта технология позволяет производить параллельную или последовательную подачу двух видов материала с различными физико-химическими свойствами и таким образом создавать биметаллические компоненты, например формы для литья пластмасс (тело формы из меди, рабочая часть - из инструментальной стали), или наносить специальные покрытия, например на гильзы цилиндров, поршневые кольца, кулачковые валы, седла клапанов.

Технологии производства металлических порошков

В настоящее время не существует общих требований к металлопорошковым композициям, применяемым в AM-технологиях. Разные компании - производители AM-машин предписывают работу с определенным перечнем материалов, обычно поставляемых самой этой компанией. Общим требованием к порошкам для AM-машин является сферическая форма частиц. Это связано с необходимостью компактного укладывания в определенный объем и обеспечения «текучести» порошковой композиции в системах подачи материала с минимальным сопротивлением. На рынке представлены десятки видов разнообразных композиций: от обычных конструкционных сталей до жаропрочных сплавов и драгметаллов. Сфера их применения уже в настоящее время крайне разнообразна - от стоматологии до ювелирной промышленности. Основными технологиями получения порошков для AM-машин являются газовая атомизация, вакуумная атомизация и центробежная атомизация. Согласно технологии газовой атомизации металл расплавляют в плавильной камере (обычно в вакууме или инертной среде) и затем сливают в управляемом режиме через специальное устройство-распылитель, где производится разрушение потока жидкого металла струей инертного газа под давлением. В Европе три компании - ALD (Голландия), PSI - Phoenix Scientific Industries Ltd. (Великобритания) и Atomising Systems (Великобритания) - производят атомайзеры в качестве товарной продукции. При вакуумной атомизации процесс происходит за счет растворенного в расплаве газа. Атомайзер состоит из двух камер - плавильной и распылительной. В плавильной камере создают избыточное давление газа (водород, гелий, азот), который растворяется в расплаве. Во время атомизации металл под действием давления в плавильной камере поступает вверх к сопловому аппарату, выходящему в распылительную камеру, где создают вакуум. Возникающий перепад давлений побуждает растворенный газ к выходу на поверхность капель расплава и «взрывает» капли изнутри, обеспечивая при этом сферическую форму и мелкодисперсную структуру порошка. Технологии центробежной атомизации весьма разнообразны, но наибольший интерес представляют те, которые позволяют получать порошки наиболее ценных для аддитивных технологий сплавов - реактивных и тугоплавких металлов. Единственным сдерживающим фактором развития аддитивных технологий является высокая стоимость расходных материалов (металлических порошков). В настоящее время рядом компаний ведутся работы по внедрению менее затратных технологий производства порошков (в том числе титановых). Прорыв в этом направлении приведет к значительному росту спроса на 3D-устройства, способные воспроизводить металлические модели.




Рис. 4. Атомайзер EIGA 50 компании ALD (Голландия)

Мировым лидером в производстве оборудования для газовой атомизации является компания ALD (в настоящее время входит в группу AMG Advanced Metallurgical Group). Она имеет в своей производственной линейке атомайзеры как лабораторного (объем тигля 1,0–2,0 л), так и индустриального назначения с производительностью до 500 кг за одну плавку и более. Компания ALD является также изготовителем атомайзеров для получения порошковых композиций по технологии EIGA - индукционная плавка с распылением инертным газом. Базовые модели EIGA 50 и EIGA 100 отличаются размерами применяемого фидстока - прутка соответственно 50 и 100 мм. Машины EIGA (рис. 4) имеют невысокую скорость распыления - около 0,5 кг/с, однако позволяют распылять достаточно большой объем материала в течение одной плавки - от единиц до десятков килограммов.

Рис. 5. Установка центробежного распыления расплава ООО «Сферамет»

В России имеется опыт получения порошковых материалов методом центробежного распыления с торца прутковой заготовки, оплавляемой плазменной дугой. Метод был разработан в 1970-х годах в ВИЛСе. В последние годы этот метод получил дальнейшее развитие в работах OOO «Сферамет» (Московская область). ООО «Сферамет» является разработчиком оборудования и технологий нового поколения для получения сферических гранул металлов и сплавов методом центробежного распыления расплава. Исходным материалом для получения гранул на разработанной установке УЦР-6 (рис. 5) служат литые цилиндрические заготовки диаметром 76-80 мм и длиной 700 мм. На этой установке были получены гранулы дисперсностью 50 мкм.

Выпуск металлических порошков для аддитивных технологий в России
Интенсивное использование аддитивных технологий в России сдерживается как отсутствием АМ-машин, так и отсутствием мелкодисперсных металлических порошков. В настоящее время российские предприятия используют импортные порошки, поставляемые в основном компаниями - производителями установок. Серийное производство металлических порошков для аддитивных технологий в России отсутствует. ФГУП «Всероссийский институт авиационных материалов» (ВИАМ, Москва) производит в относительно небольших количествах металлопорошковые композиции для аддитивных технологий. В ближайшее время здесь планируются запуск современного промышленного оборудования и коммерческий выпуск порошков. По мнению генерального директора ВИАМ академика Е.Н. Каблова, для имеющегося российского парка установок аддитивного производства необходимо около 20 тонн порошков в год. По оценкам компании «Инфомайн», этот объем завышен, и общая емкость рынка порошков для работающих установок аддитивных технологий в России составляет на начало 2016 года не более 6–7 тонн. Целый ряд российских компаний занимаются в настоящее время вопросами производства металлических порошков для аддитивных технологий. По оценкам экспертов, уже в 2016 году на отечественном рынке могут появиться прошедшие сертификацию коммерческие металлопорошковые композиции различных марок. В настоящее время ВИАМ самостоятельно обеспечивает себя порошками, однако мощности небольшие (до 2 тонн в год). Движение ВИАМ к производству порошков для аддитивных технологий началось с организации производства припоев для высокотемпературной вакуумной пайки. Требования к порошковым припоям близки к аналогичным требованиям, предъявляемым к металлопорошковым композициям, используемым при аддитивных технологиях, в том числе по сочетанию фракций разного размера. С 2010 года ВИАМ активно ведет работы по созданию производства мелкодисперсных металлических порошков распылением расплава инертным газом на установке ERMIGA10/100VI. Разработаны и освоены технологии получения порошков более 10 марок никелевых и титановых припоев (10–200 мкм). Были начаты серийные поставки припоев моторным заводам. Ведутся работы по получению мелкодисперсных порошков для аддитивных технологий. Порошки для лазерной LMD-наплавки (40–80 мкм) поставляются в ОАО «Авиадвигатель», на котором проводятся работы по отработке технологий наплавки бородок бандажных полок лопаток ТВД. Ведутся работы по получению порошков для селективного лазерного сплавления (20–40, 10–50 мкм).



Рис. 6. Установка послойного лазерного сплавления M2 Cusing компании Concept Laser

В 2014 году ВИАМ приобрел установку для селективного лазерного сплавления металлических порошков Concept Laser M2 Cusing (рис. 6), позволяющую получать детали практически любой сложности внутреннего строения напрямую из металлических порошков без использования оснастки. Начаты исследования в области получения деталей по полному циклу, что обеспечит в дальнейшем ускорение внедрения аддитивных технологий в производство. Также в ФГУП «ВИАМ» методом послойного лазерного сплавления на установке M2 Cusing фирмы Concept Laser из порошка ЭП648-ВИ (ВХ4Л) начато изготовление завихрителей для двигателей 100-07, 100-08, 100-09. В рамках НИР по заказу Федерального космического агентства проведены работы, показавшие возможность получения порошков (гранул) на основе никеля и титана для проведения селективного лазерного сплавления.

Аддитивные технологии в «росатоме»: цикл от порошков до применения

Рис. 7. Дорожная карта развития аддитивных технологий «Росатома»

Импорт в Россию аппаратов для аддитивных технологий
Россия удовлетворяет потребности в 3D-принтерах, работающих на металлических порошках, за счет импорта этой продукции. По данным «Инфомайн», Россия импортировала в 2009–2015 годах 29 установок для аддитивных технологий на металлических порошках на сумму около 12 млн долларов. При этом характерным является тренд на рост импортных поставок (рис. 10). Как видно, 2014 и 2015 годы характеризовались наивысшим уровнем поставок на сумму свыше 200 тыс. долларов.




Рис. 8. Атомайзер ALD VIGA-2B

Научный центр порошкового материаловедения (НЦПМ) при Пермском научно-исследовательском политехническом университете (ПНИПУ) приобрел в 2011 году атомайзер ALD VIGA-2B (рис. 8). В апреле 2014 года АМ-машина была запущена. Установка предназначена для исследований и получения небольших экспериментальных партий порошков. Она позволяет распылять все нетугоплавкие металлы и сплавы с температурой плавления до 1700 °C. По словам специалистов Научного центра, порошки получаются сферические, но неоднород-ные - крупностью от 0,5 до 100 мкм.


Рис. 9. Структура поставки в РФ 3D-принтеров основными зарубежными производителями в 2009–2015 гг., %

Жизнь заставила государство вплотную заняться отечественным производством. Наконец-то! Нам светит национальная технологическая инициатива «Новые производственные», разработка которой уже началась силами институтов развития и научно-технического общества России. Хорошо бы в пылу погони за новыми производственными технологиями не забыть о классических и традиционных, которые, собственно, и обеспечивают нашу промышленность необходимым сырьем и материалами. Но при ближайшем рассмотрении новое зачастую оказывается хорошо забытым старым.

Сколковский институт науки и технологий (Сколтех) уже внес свой вклад в разработку проекта. Его группа по научной и промышленной политике выпустила в конце октября публичный аналитический доклад по новым производственным технологиям. Ирина Дежина, руководитель рабочей группы, привлекла к работе экспертов из разных областей науки и техники. Получилось объемно (400 страниц) и вполне убедительно. Особенно - раздел «Аддитивные технологии». Вот о них мы и хотим сегодня поговорить.

Аддитивные технологии: что это?

Человечество любит сходить с ума, был бы повод. Но мода всегда его находит. И тон тут задают не только дизайнеры. Вот и нобелевский лауреат Роалд Хофман считает, что миром правит мода. По его мнению, химию переименовали в нанотехнологии, чтобы увлечь молодежь новым модным словом, дать ей понять, что она работает в авангарде науки, на прорывном направлении.

Конечно, название очень важно само по себе. В нем должны быть интрига, некий парадокс и, конечно, английское звучание. Ну кто бы стал сходить с ума по стереолитографии? Громоздко, непонятно, слишком специально, а для специалистов - старо. Другое дело - 3D-принтинг, в считанные годы овладевший умами людей, даже далеких от технологического мира. Ведь принтер есть во всех офисах и во многих домах. И как же с его помощью напечатать не документ на бумаге, а объемную фигурку? Загадка. Хотя 3D-принтинг и стереолитография, по сути, одно и то же.

Мы не раз писали о том и о другом (см. «Химию и жизнь», 2000, №8, 2002, №10, 2006, №5 и др.). Но технологии развиваются. Не то чтобы вглубь - здесь наши желания упираются в границы применимости методов, но вширь - это точно. Множество вариаций этих методов, их различные применения теперь собраны под одной крышей с названием «Аддитивное производство», или «Аддитивные технологии». С интригой в словах здесь не очень получилось, но звучит тем не менее вполне весомо, даже с претензией.

Так на что же претендуют аддитивное производство (additive manufacturing ) и его технологии? Суть аддитивного производства - в сложении, а не вычитании, в таком способе создания детали сложной формы, когда материал наносится последовательно, как правило, слой за слоем, поэтому расходуется его столько, сколько необходимо, не больше и не меньше. Процессом управляет компьютер, в чьей памяти заложена трехмерная модель будущей детали, нарезанная на тонкие слои-сечения. Устройство, подающее материал, скажем экструдер, движется по траекториям, заданным компьютером, слой за слоем конструируя будущее изделие. В общем - очередной виток автоматизации производства. Предполагается, что готовая деталь не нуждается в традиционной механической обработке. Так что аддитивное производство - это еще один способ изготовления деталей и предметов из разных материалов наряду с литьем, прокатом, штамповкой и резкой.

Аддитивное производство - понятие очень широкое, которое охватывает и многие классические технологии. Среди них создание полупроводниковых гетероструктур методами молекулярно-лучевой эпитаксии и CVD - химического осаждения из газовой фазы (1960-е годы), офсетная печать (ведет свою историю с XVIII века), нанесение многослойных покрытий на изделия разными способами, возведение кирпичной стены - «камень на камень, кирпич на кирпич», даже украшение торта кремовыми розочками, которые кулинар выдавливает из кулька или специального шприца, да и сам многослойный торт тоже. Гигантская скульптура «Рабочий и колхозница» В. И. Мухиной и Б. М. Иофана (1937) - пример аддитивного производства. Метровую модель скульптуры разрезали на слои, тщательно их измерили, затем размеры пропорционально увеличили и по ним изготовили деревянные формы, по которым, в свою очередь, выгнули стальные листы для каждого слоя, а их уже сварили в готовую скульптуру. Но сейчас мы говорим о новейших аддитивных технологиях, где главная роль отведена компьютерному моделированию трехмерных деталей любой сложности и их воссозданию слой за слоем с помощью автоматических систем.

Ничто не возникает на пустом месте, у всего в науке и технологиях есть предшественники. И хотя на протяжении последних 20 лет аддитивные технологии рассматриваются как нечто новое, их история насчитывает 150 лет, уходя корнями в такие области, как картография и фотоскульптура. Именно в этих областях деятельности впервые придумали разделить исходную модель на слои или фрагменты, а затем с их помощью воссоздать цельный объемный объект. В 1860 году французский скульптор Франсуа Виллем впервые сделал фотоскульптуру. Он оборудовал специальную круглую комнату, в которой был обозначен точный геометрический центр. В этот центр ставили или сажали в кресло человека, чью скульптуру предстояло сделать, и его одновременно фотографировали 24 камеры, встроенные в стены на равной высоте и равном расстоянии друг от друга. Так скульптор получал исчерпывающую информацию о модели со всех сторон и мог воссоздать ее в материале. Руками, конечно. В 1890 году Йозеф Блантер придумал послойный метод изготовления пресс-форм для печати рельефных топографических карт, на которых видны возвышенности, низменности и горы в строгом соответствии с топографическими линиями.

У истоков современного аддитивного производства стояла стереолитография. Она использовала подход, который придумал Отто Джон Мюнц в 1951 году. В установке Мюнца поршень в цилиндре смещался на маленькое расстояние и освобождал пространство для слоя, которое заполняли светочувствительным полимером. Затем полимер облучали светом так, что он застывал только на определенном участке. Следующее движение поршня - еще один слой, еще один цикл отверждения... В результате из многих слоев получалась объемная полимерная модель.

Это был ключевой принцип, который лег в основу современной стереолитографии (SL). Дальнейшие усовершенствования касались технических деталей - методов сканирования модели, способов формирования слоев из разных материалов, проецирования изображения и технологий отверждения (ультрафиолет, лазерный луч, электронный пучок и т. п.). В 1984 году Чарльз Халл запатентовал технологию и основал компанию 3D Systems, которая в 1986 году начала промышленное использование стереолитографии.

После изобретения принципа и его первого успешного практического использования события всегда развиваются по нарастающей. В 1985 году появляется технология ламинирования LOM (Laminated Object Manufacturing), в 1986 году - технология послойного наплавления FDM (Fused Deposition Modeling). Уже в 1990-х аддитивные технологии с использованием нагрева лазерным и электронным лучом для получения металлических объектов стали частью мирового производственного ландшафта.

Поначалу технологии создания трехмерных объектов называли «быстрым прототипированием». Название никакое. Но тут постарались студенты Массачусетского технологического института и в 1995 году предложили броский короткий термин «3D-Printing». Название понравилось, прижилось, стало модным. Хотя даже из этого названия следует, что 3D-печать лишь часть большой группы технологий, используемых в аддитивном производстве.

Завышенные ожидания

Всплеск в развитии аддитивных технологий пришелся на 2009 год. По мнению Королевской инженерной академии Великобритании, он связан с окончанием срока действия одного из ключевых патентов, который описывал метод FDM с использованием плавкой пластиковой нити. В результате цены на системы 3D-печати снизились в несколько раз, а инвесторы и производители немедленно обнаружили множество достоинств в аддитивных технологиях применительно к авиационной и автомобильной промышленности, к архитектуре и строительству.

Достоинства и преимущества, конечно, есть. Сам принцип сложения, а не вычитания подразумевает, что мы экономим исходные материалы. Не надо, подобно скульпторам, брать глыбу мрамора и отсекать все лишнее. Суть аддитивных технологий - использовать ровно столько материала, сколько требуется для создания объекта. Экономия материала в каждом конкретном случае будет различной, от небольшой до значительной. Если, например, у какой-то детали сплошные элементы заменить на ажурные без потери прочности (вспомним башни Шухова), то выигрыш будет очень большим. Ажурные детали сложно формовать штамповкой и литьем. А вот аддитивные технологии с этим справляются легко. И тогда создание шарнирного уголка гондолы для самолета, по оценкам European Aeronautic Defense and Space Company (Бристоль, Великобритания) и EOS Innovation Center (Уорвик, Великобритания), сэкономит до 75% исходного материала. Не говоря уже о том, что облегченные детали без потери прочности очень уместны в самолетах.

Вообще, аддитивные технологии теоретически позволяют изготавливать детали любой произвольной формы и любой сложности, например - изделия с внутренними каналами охлаждения. На токарном станке сделать это, мягко говоря, затруднительно. И конечно же трехмерные компьютерные модели деталей можно мгновенно передавать с помощью Интернета в любую точку мира - туда, где они требуются в данную минуту, на любое локальное производство. Поэтому стоимость и сроки запуска в производство какой-нибудь важной штуки заметно сократятся. Немаловажно и то, что детали можно делать только под заказ, штучно, и не накапливать их на складе. Так что плюсы, безусловно, есть.

Любая новая технология, прежде чем она займет свое место на рынке, проходит вполне стандартный путь «созревания», на котором, впрочем, может и умереть, не добравшись до финиша. Первые успешные попытки применения того или иного нового принципа на уровне прототипов порождают бум исследований и разработок и завышенные ожидания общества, достигающие пика. Затем разработчики, промышленники и общество «прозревают», осознают суровую реальность и начинают расставаться с иллюзиями. И только потом, скатившись с горы массового восторга, технология начинает медленно подниматься на плато, чтобы занять свое место на рынке. Точно такой путь проходят нанотехнологии. Они уже преодолели пик завышенных ожиданий в конце первого десятилетия XXI века, скатились в долину разочарования и теперь потихоньку, методично и без лишнего треска начинают взбираться на плато.

По оценкам компании Gartner, ожидания общества от технологии 3D-печати - соответствующий прибор в каждом доме, который позволит «печатать» самим все, что душе угодно, и не ходить в магазин, - сейчас находятся на пике. Это значит, что в ближайшие несколько лет она начнет скатываться с этой самой горы и лишь через 5–10 лет определит свое реальное место на рынке.

Пока что присутствие аддитивных технологий на мировом рынке более чем скромное - 2,2 млрд. долларов в 2012 году. Причем лишь 54% этой суммы приходилось собственно на продукцию технологий (26% - на производство оборудования, 19% - на производство исходных материалов). Но, как и любая новая технологическая отрасль, она характеризуется очень высокими темпами развития: среднегодовые темпы прироста в 2010–2012 годах составили 27%. Тем не менее Wohlers Associates оценивают рынок аддитивных технологий к 2021 году в размере всего лишь 10,8 млрд. долларов. Для сравнения: рынок продукции нанотехнологий в 2013 году превысил один триллион долларов (по данным Национальной нанотехнологической инициативы США).

Трезвый взгляд Сколтеха

Конечно, аддитивные технологии не универсальны. И конечно же любая технология имеет недостатки, ограничивающие и сдерживающие ее применение. В таблице представлен перечень технологий для аддитивного производства и материалы, которые они используют.

Давайте посмотрим, где здесь таятся подводные камни.

Стереолитография - один из самых старых и заслуженных процессов, дающий наибольшую точность в изготовлении объекта и позволяющий контролировать его параметры. Схема процесса хорошо отлажена. Сначала создают компьютерную модель объекта, затем нарезают модель в STL-формате, чтобы получить набор сечений. Этот набор передают в стереолитографический аппарат, который управляет процессом послойного формирования детали в ванне со специальным полимером. Аргоновый лазер очерчивает двумерные сечения и заставляет полимер затвердевать. Если степень полимеризации недостаточна, то готовые детали помещают в УФ-печи, чтобы уж затвердело наверняка.

Стереолитографию сегодня применяют для быстрого прототипирования, когда нужно изготовить пробный образец чего-либо, для изготовления пресс-форм и форм для литья. Но есть проблемы. В ванне после процесса всегда остается неизрасходованный материал, который, впрочем, функционален - он поддерживает изготавливаемую деталь «на весу». Но его придется отделять, а это время и лишний расход материала. Кроме того, сами изделия из полимера, полученные таким способом, не отличаются долговременной стабильностью, поэтому технологию не используют для серийного производства деталей.

Метод послойной наплавки (FDM) тоже хорош для быстрого прототипирования. Из сопла-дозатора, движениями которого управляет компьютер, расплавленный материал (чаще всего - полилактид или акрилонитрилбутадиенстирол, то есть АВС-пластик) наносится последовательными слоями и быстро затвердевает, поскольку исходно он был нагрет всего лишь на градус выше, чем его температура плавления. При такой технологии точность изготовления детали не может быть высокой (не меньше 0,05 мм), она ограничивается размером сопла и другими факторами. Качество поверхности сильно уступает тому, что получается при литье. И, что очень важно, механическая прочность изделий оставляет желать лучшего. Дело не только в остаточных термических напряжениях, которые вызывают последующую деформацию, но и в ярко выраженной анизотропии, когда механические свойства детали разные по разным направлениям внутри материала.

Струйная печать (IJP, Inkjet Printing) наносит светоотверждаемые полимерные слои (как правило, на основе акрила) при помощи печатающих головок с множеством сопел. Поэтому скорость печати довольно высока. К тому же полимер отверждается ультрафиолетовым излучением непосредственно при печати. Технология дает относительно высокую точность и хорошее разрешение. Все вроде хорошо. Но изделия по своим характеристикам все равно проигрывают тем, что получены традиционным литьем. Они хрупкие! С материалами для этой технологии тоже проблема - выбора практически нет. Так что ее область применения ограничивается прототипированием и точным литьем единичных изделий.

У технологий лазерного спекания (SLS, DMLS) свои трудности, хотя суть та же самая. Создается трехмерная компьютерная модель и нарезается на тонкие сечения. Специальный валик наносит на подложку слой (100 мкм) порошка (полимер, керамика, металл). Лазерный луч (мощность 25–100 Вт, длительность импульса 0,5–25 мс) очерчивает контур и спекает эту часть слоя. Затем валик наносит следующий слой порошка, и все повторяется. В чем проблемы? Проблемы в том, что в этих условиях трудно рассчитывать на полное плавление всех частиц порошка в слое, особенно если это легированный порошок. В результате получается неоднородная микроструктура материала, его механические свойства становятся хуже. Значит, деталь придется дополнительно нагревать, чтобы все там расплавилось. И зачем такая морока, если есть литье и прокат?

Так, может, сделать слой потоньше, а лазер помощнее, чтобы все уж заведомо расплавилось и спеклось? Именно так и поступают при селективном лазерном спекании (SLM, Selective Laser Melting), когда работают с порошками цветных металлов - титана, алюминия и меди: толщина порошкового слоя 20–40 мкм, мощность лазера до 1 кВт. Но чем тоньше слой, тем больше слоев, значит, время изготовления, и без того не маленькое, сильно увеличивается. А более мощный лазер, да еще с большим количеством слоев, съедает больше энергии. Однако, пожалуй, самое главное заключается в том, что при этой технологии детали склонны давать сильную усадку, вызывая значительные остаточные напряжения в изготовленных изделиях, которые, в свою очередь, могут вызвать деформацию и даже расслоение конечного продукта.

С электронно-лучевой плавкой - своя головная боль. Здесь круг используемых материалов ограничен проводящими электрический ток металлическими порошками. Сам процесс EBM выполняется в камере с глубоким вакуумом, что делает его довольно затратным, но, с другой стороны, облегчает работу с материалами, чувствительными к окислению.

Пожалуй, самый неоднозначный в этом ряду - это процесс послойного изготовления объектов из листового материала (LOM). Суть его в том, что изделие собирают из отдельных листов, вырезанных лазером, которые должны быть скреплены между собой. Здесь без ручной доводки, когда нужно убирать лишний материал и зачищать хвосты, не обойтись. Плюс ограниченная точность формирования изделий, неоднородность свойств материала, проблемы с долговечностью... На первый взгляд главная область его приложения - это прототипирование. Хотя у технологии, безусловно, есть потенциал, который еще предстоит раскрыть.

Подводя итог беглому экскурсу по основным аддитивным технологиям, следует признать, что количество факторов, сдерживающих распространение аддитивного производства, велико. Оборудование дорогое, материалы тоже, скорость изготовления маленькая, качество поверхности деталей таково, что необходима последующая механическая обработка, внутри детали наблюдается неоднородность свойств материала. Но главное, чего не приемлет серийное производство, - это плохая воспроизводимость, причем многоуровневая. На одной и той же установке получаются изделия с неодинаковыми характеристиками. Отличия усиливаются, если одну и ту же модель изготавливают на двух вроде бы одинаковых аппаратах одного производителя. А уж если взять оборудование от разных производителей и сделать на них модели по одному «чертежу», то различия будут еще более явными. Эта неустойчивость характеристик оборудования и продукции чрезвычайно затрудняет аттестацию и сертификацию, без которых никакое серийное производство сегодня немыслимо. Вообще, стандартизация новых технологий - глобальная проблема, которую сегодня решают уполномоченные государственные учреждения в содружестве с промышленными компаниями. Все это требует времени, усилий и ресурсов

Об этих проблемах в докладе Сколтеха написано довольно обстоятельно. Спасибо авторам за трезвый взгляд, которого сегодня частенько не хватает миру новых технологий. Однако перечисленные проблемы отнюдь не ставят крест на аддитивном производстве. Просто надо понимать, что у любой технологии есть границы применимости. А проблемы на то и проблемы, чтобы их решать.

Сегодня и завтра

Как-то пару лет назад представители современной модной молодежи, далекие, впрочем, от мира технологий, небрежно объясняли мне, что завтра никакие старые производства не понадобятся и все их закроют, потому что буквально всё будут печатать на 3D-принтерах. «И рельсы тоже будут печатать?» - спросила я. «И рельсы тоже», - получила я уверенный ответ. «А где будут брать материал для печати?» - решила я все-таки уточнить. «Да в магазинах купят!» - ответили мне собеседники совершенно серьезно.

Экономическая целесообразность и здравый смысл - вот что сдерживает распространение любых технологий. Зачем нам «аддитивные рельсы» и «аддитивные балки», если они дороже чугунного моста и в любой момент могут лопнуть? Зачем нам пластиковые бутылки и кружки, напечатанные на 3D-принтерах, если каждую надо печатать не меньше часа и стоит она соответственно гораздо больше тех, что производят серийно литьем и штамповкой?

Тем не менее у аддитивного производства со всей очевидностью есть ниша, которую можно описать так: производство единичных изделий и мелких партий уникальных деталей из дорогих материалов и в тех случаях, когда стоимость станочной обработки высока. На самом деле это очень большая ниша, начиная от ремонта и восстановления деталей сложных агрегатов и индивидуальных протезов до создания уникальных деталей сложной конфигурации.

Одна из сильных сторон аддитивного производства - штучное изготовление изделия любой формы. Как же это важно в медицине! И здесь аддитивное производство продвинулось довольно далеко. Сегодня методом стереолитографии успешно изготовлены и испытаны персональные сердечные клапаны, искусственные челюсти, части коленного сустава, акриловые краниопластические имплантаты (попросту - части черепа). Причем все эти детали сугубо индивидуальные, в точности повторяющие те, что приходится заменять. Два ведущих производителя слуховых аппаратов, Siemens и Phonak, применяют аддитивные технологии для изготовления индивидуальных устройств, точно соответствующих уху пациента. Компании могут сделать такие устройства за один день!

Так что медицина - обширное поле для аддитивного производства, начиная с изготовления специального хирургического инструмента, индивидуальных протезов, имплантатов и заканчивая тканями и органами из клеток человека.

Особый интерес к технологиям аддитивного производства проявляет авиационно-космическая промышленность. В общем-то, оно и понятно. Эти отрасли требуют мелкосерийного производства высококачественных деталей, то есть штучного товара. Другое дело, что сертификационные требования здесь очень жесткие. Самолет - это не шутки, из-за поломки одной детали могут погибнуть люди. Да и на космическом корабле тоже. Тем не менее некоторые сертификаты уже выданы. Компания General Electric заявила, что готова к относительно массовому производству топливных форсунок для своего нового турбовинтового двигателя LEAP с помощью процесса DMLS из кобальтохромового порошка. Компания отметила, что может выпускать по меньшей мере 25 000 форсунок в год (одному двигателю требуется 19 форсунок).

Журналисты утверждают, что компания Boeing произвела методами аддитивных технологий более 20 000 деталей, которые уже используют в военных и гражданских самолетах компании. Множество SLS-деталей установлено на нескольких версиях военных самолетов, таких, как самолет дальнего воздушного радиолокационного обнаружения и управления, модели C-40, AWACS и P-8.

Аддитивные технологии оказались чрезвычайно востребованными для ремонта и восстановления деталей больших механизмов, скажем - турбинных лопаток. Расчеты показывают, что если в авиационном двигателе AV8B, сделанном из сплава титана, алюминия и ванадия, восстанавливать лопатки по технологии LENS, то можно сэкономить 715 000 долларов в год. Вообще, в литературе на эту тему много примеров.

Скажем, авиакомпания может сэкономить 2,5 млн долларов только за счет того, что уменьшит на 50–80% вес металлических креплений в салоне. Именно это и позволяют сделать аддитивные технологии.

Компания Daimler AG (Штутгарт, Германия) в партнерстве с Concept Laser и Фраунгоферовским институтом лазерных технологий перешла на изготовление крупных функциональных металлических частей с помощью аддитивных технологий. Они позволили оптимизировать геометрию деталей и добиться снижения веса. Компания Local Motors с помощью 3D-печати изготовила первый пригодный для поездок автомобиль под названием Strati. Этот двухместный электрокар официально представили публике в сентябре 2014 года в Чикаго. Strati состоит всего из 49 деталей, включая напечатанный на 3D-принтере корпус, в то время как типичный промышленный автомобиль имеет в своем составе несколько тысяч деталей. Печать автомобиля из термопластика, усиленного углеродными волокнами, с помощью лазерной системы заняла примерно 44 часа. Автомобиль способен разгоняться до скорости 40 миль в час и проезжать на одной зарядке до 120 миль. Продажи Strati могут начаться в 2016 году, а его цена составит 18 000–34 000 долларов. Другим пригодным для эксплуатации электромобилем, изготовленным с помощью 3D-печати, станет Urbee 2, который будут делать с помощью технологии FDM.

Но пожалуй, самая просторная ниша для аддитивного производства - это товары широкого потребления. Компания FOC (Нидерланды) моделирует предметы обстановки (абажуры, стулья и другие декоративные элементы) и производит их из нейлонового порошка с помощью технологии LS по мере получения заказов через Интернет.

Аддитивное производство дает больше свободы дизайнеру. В сущности - твори, что хочешь, все возможно. Поэтому неудивительно, что на подиум уже выходят модели в одежде из тканей, вышедших из 3D-печати, и в замысловатой пластиковой обуви того же происхождения.

Свобода проектирования распространяется и на клиентов, которые могут через Интернет самостоятельно управлять дизайном продукта. Компания Figureprints предлагает клиентам создать собственного персонажа игры World of Warcraft с помощью программы на сайте и отправить свой заказ производителю. Фигурку персонажа изготавливают на централизованном производстве и высылают заказчику. В игровой индустрии уже существуют сотни миллионов виртуальных персонажей, которых покупатели вполне могут захотеть превратить в физические объекты. По этой причине игровая индустрия может стать одной из самых привлекательных рыночных ниш для аддитивного производства.

Что же касается архитектуры и прикладного искусства, то здесь аддитивные технологии утвердились, видимо, навсегда. А как иначе создавать макеты новых зданий, сооружений и городов. Да и скульптуру проще «отпечатать» по модели (можно ведь и тиражировать), чем лепить руками или отливать из бронзы, - дорого!

В мире и в России

Аддитивное производство требует оборудования. Сегодня рынок соответствующих установок делится на три сегмента. Быстрее всего растет сегмент дешевых 3D-принтеров для офисов, ориентированных на изготовление концептуальных макетов. Второй сегмент - оборудование средней стоимости для создания прототипов деталей с различной степенью точности и/или функциональности. Дешевые и средние по стоимости установки обычно работают с полимерным материалом. Третий сегмент - установки высокого класса, которые стоят от двухсот тысяч до двух миллионов долларов. Они работают с полимерами, металлическими и керамическими порошками, с их помощью можно делать вполне крупногабаритные детали. Ведущие изготовители установок - американские компании 3D Systems и ExOne, израильская Stratasys, шведская Arcam, а также немецкие EOS и Voxejet.

К 2013 году производством и продажей установок занимались шестнадцать компаний в Европе, семь - в Китае, пять - в США и две - в Японии. По числу смонтированных систем с большим отрывом лидируют США, собравшие у себя 38% промышленных установок. Значительное количество установок эксплуатируется также в Японии (9,7%), Германии (9,4%) и Китае (8,7%).

Доля России составляет 1,4%, что и понятно - научный задел России в этой области весьма невелик, всего 0,76% от мирового объема научных публикаций в этой области. За последние 15 лет в России был выдан 131 патент по различным аспектам аддитивного производства (0,14% от мирового количества), причем 14 из них получили российские заявители, а 117 - иностранные. Для сравнения: Южная Корея, США, Япония и Китай совместно владеют 90% патентов в этой сфере.

Что касается производства, то в России используют и внедряют аддитивные технологии считанное количество промышленных компаний и исследовательских центров в Москве, Санкт-Петербурге, Воронеже, Самаре, Ставрополе и Казани. Правда, в основном они продают западное оборудование и в лучшем случае занимаются прототипированием. Опять мы оказались в отстающих. Конечно, все объяснимо: оборудование дорогое, кадры надо готовить, производство соответствующих исходных материалов налаживать, стимулировать фундаментальные исследования и НИОКР.

Но есть и другой важнейший системный фактор. Применение аддитивного производства оправданно лишь тогда, когда четко и эффективно налажено управление всем жизненным циклом продукции - то, что в российской промышленности практически отсутствует. Иными словами, нужна развитая, хорошо скоординированная промышленность-от добывающей к перерабатывающей и производящей. Именно с этим столкнулась российская Нанотехнологическая инициатива, объявленная в 2007 году. В результате РОСНАНО пришлось заниматься созданием системы подготовки кадров и инфраструктуры, стандартизацией, сертификацией и строительством предприятий.

Ничего не поделаешь, придется работать с тем, что есть. Главное, не ставить задачу «догнать и перегнать» и «занять n% мирового рынка». Хотя и на мировом рынке Россия могла бы найти свою нишу, если бы разработала и предложила подходящие материалы для аддитивного производства - металлические или керамические порошки, например. Однако гораздо важнее подумать о внутреннем рынке. А чтобы его создать и обеспечить, необходима общенациональная программа развития аддитивного производства.

Подготовлено по материалам «Публичного аналитического доклада по развитию новых производственных технологий», выпущенного Сколковским институтом науки и технологий 22 октября 2014 года.

– процесс соединения материалов для создания объектов на основе данных трехмерных моделей, как правило, послойно, в отличие от субтрактивного метода и метода формовки. В разное время использовались такие термины, как аддитивное изготовление, аддитивные процессы, аддитивные методы, аддитивное послойное производство, послойное производство, изготовление твердотельных изделий произвольной формы и изготовление изделий произвольной формы.

В этой динамически развивающейся отрасли быстро появляются новые термины. 3D-печать , согласно стандарту ISO/ASTM 52900, - это изготовление объектов путем нанесения материала печатной головкой, с помощью сопла или другой технологии печати. В прошлом этот термин ассоциировался с недорогими станками невысокой производительности. Однако сейчас это не так: термины «аддитивное производство» и «3D-печать» означают одно и то же.

«Аддитивное производство» (Additive Manufacturing) - официальный отраслевой термин, утвержденный организациями по стандартизации ASTM и ISO, однако словосочетание « » более распространено и фактически стало стандартом. Особенно широко оно используется в СМИ, терминологии стартапов, инвесторов и других сообществ.

Одно из преимуществ аддитивных технологий – возможность создания объектов сложной формы и структуры с высокой точностью

К аддитивному производству (АП) относятся семь различных . Изделия можно создавать послойно путем:

  • экструзии,
  • разбрызгивания (струйного напыления),
  • УФ-отверждения,
  • ламинирования,
  • сплавления материалов.

Основные технологии , применяемые при создании изделий на аддитивных установках:

  • SLM/DMP (Selective Laser Melting / Direct Metal Printing) – металлического порошка по математическим CAD-моделям при помощи иттербиевого лазера;
  • SLA (Laser Stereolithography) – , основана на послойном отверждении жидкого материала под действием лазера;
  • SLS (Selective Laser Sintering) – под лучами лазера частиц порошкообразного материала до образования физического объекта по заданной CAD-модели;
  • FDM (Fused Deposition Modeling) – метод послойного наплавления с использованием пластиковой нити;
  • MJP (MultiJet Printing) – с помощью фотополимера или воска;
  • CJP (ColorJet Printing) – путем склеивания специального порошка на основе гипса.


Основные материалы , используемые в аддитивных процессах:

  • пастообразные пластики;
  • УФ- и фотоотверждаемые жидкие ;
  • керамонаполненные жидкие фотополимеры;
  • гипсовый порошок;
  • полистирол в виде порошка;
  • стеклонаполненные, угленаполненные и металлонаполненные полиамиды в виде порошка;
  • в виде порошка и др.

Аддитивные технологии используются для создания физических моделей, прототипов , образцов, инструментальной оснастки и производства пластиковых, металлических , керамических, стеклянных, композитных компонентов и компонентов из биоматериалов. Принцип действия аддитивных установок основан на построении тонких горизонтальных слоев из 3D-моделей, созданных с помощью систем автоматизированного проектирования (САПР) и 3D-сканеров .

Проектные и производственные предприятия используют АП для изготовления изделий потребительского, промышленного, медицинского и военного назначения, и это далеко не все. Камеры, мобильные телефоны, , внутренняя отделка автомобилей, детали и узлы самолетов , станки и медицинские имплантаты - лишь начало обширнейшего списка продуктов аддитивного производства.

АП упрощает и ускоряет процесс разработки продукции. Компании прибегают к аддитивным технологиям, стремясь сократить время производства, повысить качество продукции и сократить затраты. В качестве средства визуализации 3D-печать помогает предприятиям определить вероятность создания дефектной или неудовлетворительной продукции. Кроме того, разрабатываются методы, процессы и системы для изготовления оснастки. Первые попытки были направлены на быстрое создание оснастки, например, форм для литья под давлением, но они не были успешными.

В последнее время 3D-печать стали использовать для повышения качества оснастки для под давлением. В некоторых областях АП применяют для получения результатов, недостижимых при использовании обычных станков. В других производствах аддитивные технологии используются для создания таких инструментов для изготовления и сборки, как зажимные устройства, крепления, шаблоны и направляющие для сверления и резки.

3D-печать оказывает большое влияние на производство многих продуктов. Предприятия - крупные и малые - успешно применяют технологии для производства готовых изделий . По мнению экспертов, производство готовых изделий станет крупнейшей областью применения аддитивных технологий. Эта технология может повлиять на производство больше, чем другие, традиционные, методы.

Отрасль продолжает развиваться, возникают новые методы, технологии, материалы, прикладные задачи и бизнес-модели . Расширяется география и сфера промышленного применения АП. Аддитивные технологии уже оказали огромное влияние на развитие проектирования и производства; в будущем их роль будет все больше возрастать.

В России рынок 3D-технологий достаточно молод, но уже показывает динамичный рост (по данным Роснано , около 30% в год). Все больше компаний осознают потребность в применении аддитивных методов в производстве и научных исследованиях. Есть организации, которые активно занимаются сертификацией материалов и уже тестируют 3D-принтеры собственного производства. На предприятиях появляются лаборатории по разработке и внедрению 3D-решений на отдельных участках технологического цикла.

Аддитивные технологии - один из главных мировых трендов, упоминаемых в контексте новой промышленной революции. Ежегодный рост этого рынка, который на самом деле еще не сформирован и не имеет четких границ, варьируется в пределах 20-30%.

Так, ведущая консалтинговая компания в индустрии 3D-печати Wohlers Associates сообщила в своем очередном ежегодном отчете (Wohlers Report 2017), что индустрия аддитивного производства выросла в 2016 году на 17,4% (в 2015-м - на 25,9%) и составляет сейчас свыше $6 млрд. Если в 2014 году системы 3D-печати выпускали 49 компаний, то по итогам прошлого года число производителей увеличилось до 97. Эксперты дают самые оптимистичные прогнозы - по оценкам аналитической компании Context, рынок аддитивных технологий достигнет $17,8 млр уже к 2020 году. Аналитики The Boston Consulting Group посчитали: если к 2035 году компаниям удастся внедрить 3D-печать хотя бы на 1,5% от своих общих производственных мощностей, то объем рынка превысит к этому времени $350 млрд.

Ажиотаж вокруг этой темы вполне объясним. В отличие от традиционных технологий обработки металла, аддитивное производство построено не на вычитании, а на добавлении материала. На выходе получаются детали сложной геометрической формы, сделанные в короткие сроки. Когда скорость изготовления продукции сокращается в десятки раз и коренным образом меняются издержки, это меняет всю экономику машиностроения.

За счет чего происходит удешевление производства? Во-первых, снижается число комплектующих частей создаваемых деталей. Например, чтобы изготовить обычным методом топливную форсунку для реактивного двигателя, необходимо приобрести около 20 разных запчастей и соединить их с помощью сварки, что является трудоемким и затратным процессом. Применение же 3D-печати позволяет создавать форсунку из одного цельного куска.

Благодаря этому снижается и вес готовой детали, что особенно ценно для авиационной отрасли. Производители авиадвигателей уже научились создавать аддитивным способом различные кронштейны и втулки, которые на 40-50% легче своих «традиционных» аналогов и не теряют при этом прочностных характеристик. Почти вдвое удается снизить вес и отдельных деталей в вертолетостроении, например, связанных с управлением хвостовым винтом российского вертолета «Ансат». Уже появились и первые прототипы 3D-печатных четырехцилиндровых автомобильных двигателей, которые на 120 кг легче стандартных аналогов.

Другой важный момент - экономия исходного сырья и минимизация отходов. Собственно, сама суть аддитивных технологий заключается в том, чтобы использовать ровно столько материала, сколько требуется для создания той или иной детали. При традиционных способах изготовления потери сырья могут составлять до 85%. Но наиболее, пожалуй, важное преимущество аддитивных технологий заключается в том, что трехмерные компьютерные модели деталей можно мгновенно передавать по сети на производственную площадку в любую точку мира. Таким образом, меняется сама парадигма промышленного производства - вместо огромного завода достаточно обладать локальным инжиниринговым центром с необходимым 3D-оборудованием.

Впрочем, так обстоят дела в теории. На практике же сфера аддитивного производства - это история про поливариативность, про то, как технологии опередили возможные сценарии их применения. Вся передовая промышленная общественность осознает, что в их руках находится крайне перспективная базовая технология, но что с ней делать - остается открытым вопросом.

На сегодняшнем этапе главной задачей является как раз поиск сфер применения аддитивных технологий, и пока эту проблему еще никто не решил. Не найден ответ и на другой фундаментально важный вопрос: где находится тот «водораздел», при котором применение аддитивных технологий становится экономически эффективнее традиционных, классических способов - штамповки и литья? К примеру, ни один из крупных мировых игроков по производству газовых турбин, в том числе и на российском рынке, пока не определился в том, какая из конкурирующих технологий будет применяться в будущем для производства лопаток для двигателя самолета - аддитивные технологии или традиционное литье.

Программы поддержки аддитивной промышленности в зарубежных странах сводятся в основном к двум направлениям - финансированию НИОКР и формированию консорциумов, объединяющих предприятия, исследовательские центры и университеты.

К примеру, в США в 2012 году был создан Национальный институт инноваций в области аддитивной промышленности («America Makes») с целью объединения усилий американских компаний и научных кругов, занимающихся передовыми производственными технологиями. Общая стоимость проекта составила $70 млн, из них $30 млн вложило правительство. Основным куратором Института выступает Министерство обороны США, поэтому созданный акселератор поддерживает инновационные разработки, связанные также с военной сферой. Такие, например, как напечатанный на 3D-принтере гранатомет RAMBO .

Практически каждый десятый 3D-принтер произведен в Китае, а местный рынок аддитивных технологий, согласно прогнозам, будет показывать ежегодный рост на 40% и превысит к 2018 году 20 млрд юаней . При помощи технологии 3D-печати цементными смесями китайцы даже печатают жилые дома и «офисы будущего» на берегу Персидского залива. Ключевой структурой в стране, объединяющей несколько десятков местных инновационных центров, является Индустриальный альянс Китая по технологиям 3D-печати.

Россия пока отстает от стран – технологических лидеров по вкладу в общий рынок аддитивных технологий. Но я бы не стал называть это отставание критичным. Просто потому, что глобальная конкурентная борьба ведется не на «поляне» создания непосредственно аддитивных машин, принтеров и порошков. Конкуренция состоит в поиске рыночных ниш применения аддитивных технологий. Выиграет в ней не тот, кто нарастит производство своих аддитивных установок или сырья, а тот, кто поймет, что именно нужно печатать, для чего, и в каких областях это принесет максимальный экономический эффект.

В оживленных дискуссиях, которые ведутся сейчас на тему развития аддитивных технологий, противопоставляются обычно две крайности. Одна из них - «мы напечатаем всё»: дома, самолеты, танки, ракеты. Другая крайность – «все аддитивные технологии экономически неэффективны». И это тоже одна из ключевых системных проблем.

На сегодняшний день можно четко очертить только такие направления применения аддитивных технологий, как прототипирование и создание деталей сверхсложной геометрии. Например, на рынке систем прототипирования присутствуют сегодня более 30 отечественных серийных производителей 3D-принтеров, использующих технологию печати пластиковой нитью. Они выпускают около 5 000 принтеров ежегодно. Причем доля российских комплектующих в этих изделиях составляет порядка 70%.

В этот небольшой круг направлений можно добавить также быстрое мелкосерийное производство изделий по индивидуальному заказу. Однако производство конечных продуктов и быстрое изготовление прототипов – это две разные производственные «философии». Аддитивные технологии призваны, скорее, дополнить традиционные методы металлообработки, нежели заменить их, как предрекают многие эксперты.

Что происходит сейчас с мировой индустрией? Из большой промышленности, нацеленной на достижение эффекта масштаба, она превращается в глобальную гибкую сеть индивидуализированных производств. Аддитивные технологии также позволяют современному производству мигрировать из продуктового в сервисный сегмент.

Простой пример, уже реализованный на практике, – беспилотный летательный аппарат для нужд обороны, полностью напечатанный на 3D-принтере. Так как при его проектировании и изготовлении все основные процессы были автоматизированы, нет никакой нужды держать на каком-то заводе большой запас запчастей для этой техники. Вместо того чтобы отправлять ремонтировать беспилотник на завод, необходимые элементы можно будет печатать прямо на месте. Рабочие лопатки двигателей пока не печатают, но уже осуществляют их ремонт методом лазерной порошковой наплавки.

Чисто гипотетически можно провести аналогичную параллель с авианосцем, находящемся в походе, или с поездом. Имеющийся в распоряжении ремонтников принтер помог бы доработать или отремонтировать определенные детали, например, те же лопатки. Таким образом, аддитивные технологии, вероятнее всего, займут свое место именно в сервисном сегменте, отражая один из главных трендов развития современных промышленных технологий – кастомизацию продукции под потребителя.

В этой связи государственная политика по развитию данной сферы в России, должна опираться на следующие основные направления. Во-первых, это создание условий для снижения рисков, связанных с пилотным внедрением аддитивных технологий. В частности, с недавних пор действует новый механизм субсидирования, когда государство компенсирует предприятию 50% расходов, понесенных им при производстве и реализации пилотных партий промышленной продукции. Во-вторых, поддержку проектам в сфере аддитивных технологий оказывает Фонд развития промышленности, выдавая компаниям целевые льготные займы от 50 до 500 млн рублей под 5% годовых. Кроме того, участники рынка могут претендовать на финансовую поддержку со стороны государства для погашения части понесенных затрат на НИОКР.

Стимулирование разработок в сфере аддитивного производства необходимо поддерживать, так как их применение в современной промышленности – это долгий поиск, путем проб и ошибок, оптимальных ниш для решения конкретных задач. Например, можно создать что-то вроде «открытой библиотеки» технологических решений, объясняющей, как на конкретном станке, используя конкретный порошок, можно изготовить определенную деталь.

Другая важная задача – формирование эффективных площадок для взаимодействия конечных заказчиков с производителями материалов и оборудования. Такой Центр аддитивных технологий уже создается Ростехом на базе производителя газотурбинных двигателей НПО «Сатурн», имеющего многолетний опыт работы в области аддитивных технологий. Идею создания центра поддержали крупнейшие представители российской авиационной отрасли: Роскосмос, ОАК, ОДК, «Вертолеты России», «Технодинамика», КРЭТ и др.

Кроме того, тема аддитивных технологий - это прерогатива стартапов. Сейчас они зачастую просто скупаются мировыми технологическими гигантами. И сложно определить истинный мотив принятия данных решений: является ли это искренним желанием вкладываться в перспективное аддитивное направление, или же это просто попытка повысить свою капитализацию за счет своевременного поддержания модного тренда.

Так, в прошлом году американский концерн General Electric приобрел за $1,4 млрд две европейские компании, специализирующиеся на 3D-печати, - шведскую Arcam AB и немецкую SLM Solutions Group AG. Корпорация Siemens увеличила до 85% долю в британской компании Materials Solutions, специализирующейся на аддитивных технологиях в газотурбостроении. В начале 2017 года BMW, Google и Lowe’s сообща инвестировали $45 млн в американский стартап Desktop Metal, занимающийся созданием инновационной технологии 3D-печати металлических изделий. В общей сумме инвесторы вложили в этот проект, состоящий из 75 инженеров и программистов, уже около $100 млн

В связи с этим важно не допустить ситуации, при которой мы могли бы потерять наши успешные российские стартапы в сфере аддитивного производства. Разумеется, нельзя обойтись и без подготовки соответствующих инженерных кадров, которые могли бы профессионально разбираться в том, что целесообразно печатать, а что эффективнее продолжать делать традиционным методом.

Таким образом, основная проблема на сегодня заключается не в том, чтобы разработать современный отечественный 3D-принтер или создать качественные порошки (технологии ради самой технологии – довольно бессмысленная вещь), а в том, чтобы в нужном месте правильно применить уже имеющиеся на рынке разработки. Для этого у нас должны быть российские компании-драйверы, которые активно работали бы с этими технологиями, и максимально рационально и эффективно применяли бы их на практике.

Это госкорпорация Росатом, которая делает сейчас особую ставку на развитие аддитивных технологий, формируя собственную базу оборудования, материалов и технологий для выхода на новые внешние рынки. Это передовые наши компании в авиационной и ракетно-космической отрасли, которые объединились на базе упомянутого мной центра аддитивных технологий. Это Ростех, в состав которого входит «Объединенная двигателестроительная корпорация» (ОДК) – один из главных российских драйверов внедрения аддитивных технологий. Кроме того, в регионах создаются инжиниринговые центры – «точки роста» для инновационных компаний, которые помогают коммерциализировать разработки и доводить лабораторные образцы продукции до ее серийного производства.

Подобные, по-своему прорывные, примеры уже есть. Аддитивные технологии были успешно применены при изготовлении деталей двигателя ПД-14 для гражданской авиации, а также в конструкции нового газотурбинного двигателя морского применения, начало серийного производства которого запланировано на 2017 год. В области промышленного дизайна и быстрого прототипирования у российских специалистов есть передовые разработки, связанные со стрелковым оружием и аэрокосмической отраслью.

Это примеры успешного нахождения сфер для применения аддитивных технологий. Уже сейчас очевидно, что стопроцентной такой нишей станет медицина. Эндопротезы, биопринтинг, зубные мосты, ортопедия… Здесь аддитивные технологии уже переживают расцвет. В числе других потенциальных отраслей – инструментальная промышленность (производство инструментов и их шаблонов), космическая и авиационная сферы (легкие детали со сложной геометрией, компоненты турбин).

Аддитивные технологии связаны с поиском конкретных ниш, но и традиционная металлообработка не сдаст своих позиций в ближайшие годы. Важно не пропустить возможное изменение производственной парадигмы в тех отраслях, где мы традиционно сильны, а также искать новые сферы применения аддитивных технологий. Ведь ключевой вопрос заключается не в том, чтобы догнать и перегнать конкурентов, а в самой целесообразности этого забега и понимании того, на правильном ли треке мы находимся в конкретный момент.

Loading...Loading...